Name:
Period: \qquad

Heredity is the passing on of traits, or characteristics, from parent to offspring. The units of heredity are called genes. Different versions of the same gene are called alleles. Genes are found on the chromosomes in a cell. The combinations of genes for each trait occur by chance.

When one allele in a pair is stronger than the other allele, the trait of the weaker allele is masked, or hidden. The stronger allele is the dominant allele, and the allele that is masked is the recessive allele. Dominant alleles are written as capital letters and recessive alleles are written as lowercase letters. If both alleles are different, the trait is said to be heterozygous, or hybrid. If both alleles are the same, the trait is said to be homozygous, or purebred. Sometimes alleles are neither dominant nor recessive. The result of such a situation is a blending of traits.

The genetic makeup of an individual is known as its genotype. The observable physical characteristics of an individual that are the result of the genotype are known as its phenotype.

In this investigation, you will observe how the results of different gene combinations produce certain traits.

Procedure:

1. Flip a coin twice to determine the genotype for each trait and record it in the data table.

Heads = allele 1, Tails = allele 2 (Example: if you flipped heads twice, your monster will have two copies of allele 1 for his genotype.)
2. Determine the phenotype resulting from the allele pair for each trait.
3. Repeat steps 1-2 for each trait and complete the female monster's Table 1.

Table 1: Genotypes \& Phenotypes for Female Monster

Trait	Allele 1	Allele 2	Genotype	Phenotype
Eye	Two small eyes (E)	One large eye (e)		
Eye Color	Red (R)	White (r)		
Skin Color	Green (G)	Blue (g)		
Tail Shape	Curly (C)	Straight (c)		
Tail Color	Purple (P)	Orange (p)		
Tail	Have tail (T)	No tail (t)		
Teeth	Sharp (S)	Round (s)		
Feet	Four toes (F)	Three toes (f)		
Horn Color	Purple (W)	White (w)		
Ear shape	Pointy (Y)	Round (y)		
Ears	Four ears (N)	Two ears (n)		
Claws	Long (L)	Short (l)		

4. The female monster (described in Table 1) is married to a male monster (see Table 2 below) and they plan to have baby monsters. They are interested in finding out the probabilities of which traits their offspring will have. Fill in the missing genetic information in the table for the male.

Table 2: Genotypes \& Phenotypes for Male Monster

Trait	Genotype	Phenotype
Eyes	ee	White
Eye Color		Green
Skin Color		Straight
Tail Shape	Pp	No tail
Tail Color		Round
Tail	Ff	
Teeth	ww	
Feet	yy	Have 2 ears
Horn Color		Short
Ear shape		
Ears		
Claws		

5. Complete the Punnett Squares on the next few pages to predict what traits would result from a cross between two monsters for each trait, and answer the following questions:
a. Eyes- what percentage of offspring will have only one eye? \qquad
b. Eye color- what percentage of offspring will have red eyes? \qquad
c. Skin color- what percentage of offspring will have green skin? \qquad
d. Tail- what percentage of offspring will have a tail? \qquad
e. Feet- what percentage of offspring will have three toes? \qquad
f. Horn color- what percentage of offspring will have purple horns? \qquad
g. Ears- what percentage of offspring will have 2 ears? \qquad
h. Claws- what percentage of offspring will have long claws? \qquad

1.Write out three possible parental crosses that could produce a child with a heterozygous genotype for tail shape (Aa).
\qquad
\qquad X \qquad $=\mathrm{Aa}$
\qquad
\qquad $=\mathrm{Aa}$
6. In humans, the sex of an individual is determined by the particular combination of the two sex chromosomes. Individuals that have two X chromosomes (XX) are females, whereas those with an X and a Y chromosome (XY) are males. Monster genetics works the same way. What percent chance do the male and female monsters have of producing a male offspring? A female offspring? Explain your answer. (Yes use COMPLETE SENTENCES!)

Critical Thinking and Application: ANSWER IN COMPLETE SENTENCES!!!

1. How might it be possible for the baby monster to show traits that neither of the parents exhibit?
2. Do you think the baby monster could have some traits of the grandparents?
3. A small monster colony has a large amount of monsters that have an abnormal amount of horns. Why might this trait be so prevalent in this colony?
