\qquad

Heredity Study Guide (5.1/5.2)

1. Define the following vocabulary words:

Allele:

Homozygous:

Heterozygous:

Genotype:

Example:
Phenotype:

Example:
Dominant:

Recessive:
2. For each genotype below, indicate whether it is heterozygous (He) or homozygous (Ho)

AA \qquad Bb \qquad Cc \qquad Dd \qquad Ee \qquad ff \qquad GG \qquad HH \qquad Ii \qquad Jj \qquad kk \qquad Ll \qquad Mm \qquad nn \qquad 00 \qquad Pp \qquad
3. For each of the genotypes below determine what phenotypes would be possible. Purple flowers are dominant to white

PP \qquad Pp \qquad pp \qquad

Round seeds are dominant to wrinkled

RR \qquad Rr \qquad rr \qquad
\qquad Bb \qquad bb \qquad

Bobtails are recessive (to long tails)
TT \qquad Tt \qquad tt \qquad
4. For each phenotype below, list the genotypes (remember to use the letter of the dominant trait)

Straight hair is dominant to curly
\qquad straight \qquad straight \qquad curly

Tail spikes are dominant to plain tails
\qquad spikes \qquad spikes \qquad plain
5. Show the cross of a homozygous tall plant and a homozygous short plant. Use the letter T

What percentage of the offspring will be tall? \qquad

6. Show the cross of a Tt plant and a Tt plant.

a. What percentage of the offspring will be short? \qquad
b. What percentage of offspring is tall? \qquad
7. In pea plants purple flowers are dominant to white flowers.
a. Two white flowered plants are crossed...

What percentage of their offspring will have white flowers? \qquad

b. A white flowered plant is crossed with a plant that is heterozygous for the trait.

What percentage of the offspring will have purple flowers? \qquad

c. Two plants, both heterozygous for the gene that controls flower color are crossed.

What percentage of their offspring will have purple flowers? \qquad
What percentage will have white flowers? \qquad
8. In guinea pigs, the allele for short hair is dominant.
a. What genotype would a long-haired guinea pig have? \qquad

Show the cross for two heterozygous guinea pigs.

b. What percentage of the offspring will have short hair? \qquad
c. What percentage of the offspring will have long hair? \qquad
9. What are the sex chromosomes in a human female? male?
10. In humans, the gene for muscular dystrophy is sex-linked (X-linked) and recessive. Cross a normal muscle toned heterozygous female with an affected male.

Parents: \qquad X \qquad
a. What are all of the possible genotypes of the offspring?
\qquad

b. What are the possible phenotypes of the offspring?
\qquad
c. What is the probability they will have a muscular dystrophy son? \qquad \% chance
d. What is the probability they will have a muscular dystrophy daughter? \qquad \% chance
11. What is the difference between incomplete dominance and co-dominance? Explain how the results of each cross would vary in a cross between a black furred rat and a white furred rat.
12. Refer to the Punnett square below. Color-blindness is an X-linked recessive trait.

	$\boldsymbol{X}^{\boldsymbol{B}}$	\boldsymbol{Y}
$\boldsymbol{X}^{\boldsymbol{B}}$	$\boldsymbol{X}^{\boldsymbol{B}} \boldsymbol{X}^{\boldsymbol{B}}$	$\boldsymbol{X}^{\boldsymbol{B}} \boldsymbol{Y}$
$\boldsymbol{X}^{\boldsymbol{b}}$	$\boldsymbol{X}^{\boldsymbol{B}} \boldsymbol{X}^{\boldsymbol{b}}$	$\boldsymbol{X}^{\boldsymbol{b}} \boldsymbol{Y}$

a. Does the father have color blindness?
b. Does the father have a recessive allele?
c. State whether the only child that could have color blindness is male or female.
13. Mrs. Clink is type " A " and Mr. Clink is type " O." They have three children named Matthew, Mark, and Luke. Mark is type "O," Matthew is type "A," and Luke is type "AB." Based on this information:
a. Mr. Clink must have the genotype \qquad
b. Mrs. Clink must have the genotype \qquad because \qquad has blood type
c. Luke cannot be the child of these parents because neither parent has the allele \qquad .

14. Create a pedigree showing the following members of a family for the Sickle Cell Disease (recessive disease, NOT sex-linked)

Mother - carrier (heterozygous) for Sickle Cell Disease
Father - carrier (heterozygous) for Sickle Cell Disease
Son - affected by Sickle Cell Disease
Son - carrier for Sickle Cell Disease
Son - affected by Sickle Cell Disease
Daughter - no Sickle Cell Disease

15. Color in the pedigree below using the following information:

Colorblindness is a recessive, sex-linked disorder.
Grandma and Grandpa are NOT colorblind.
Mickey is colorblind; all of their other children have normal color vision.
Sonny and John both inherited colorblindness, as did their cousins Barney and Janet.

What are the genotypes o Barney, Krista, and Janet?

Barney' genotype: \qquad
Krista's genotype: \qquad
Janet's genotype: \qquad
16. Using the karyotype to the below to answer the following questions:
a. Is this a typical karyotype?
b. If your answer was no, circle the abnormality in the karyotype.
c. If there are extra chromosomes in this karyotype, what effect would this have on an individual?
d. What is the sex of this individual?

e. For a normal karyotype, how many chromosomes would you see?
17. How can the environment affect the phenotype of an organism? Give specific examples.

