Name
 Notes, Diagrams, Drawings 2 factors, one from each parent, controls each trait one factor from the egg and one factor from the sperm (159)
 Define: threadlike structures inside the nucleus, contain genetic information that control traits exist as pairs- one chromosome from each parent (159)
 Define: a section of a chromosome that has genetic information for one trait each chromosome can have information about hundreds or thousands of traits (160)
 Define: the 2 different forms of a gene- one from each parent can be the same or different (160)
• Define : how a trait appears or is expressed, what you can <i>observe</i> (160)
 Define: the 2 <i>alleles</i> that control the phenotype of a trait you cannot see an organism's genotype you can make inferences about a genotype based on its phenotype (160)
 <i>uppercase letters</i> represent dominant alleles <i>lowercase letters</i> represent recessive alleles (161) Phenotype (observed traits) dominant recessive Genotype (alleles of a gene) RR Rr rr

What is homozygous?	• Define : when the 2 alleles of a gene are the same in a genotype (RR or rr) (161)
What is heterozygous?	• Define : when the 2 alleles of a gene are different in a genotype (Rr) (161)
How is inheritance modeled?	 the chance of getting an outcome can be represented as a <i>ratio</i> 2 models can be used to predict and identify traits among genetically related individuals: Punnett squares pedigrees (162)
What are Punnett squares?	• Define : a model used to predict possible genotypes and phenotypes of offspring (162)
How are Punnett squares analyzed?	 FIGURE 7: Yy and Yy parents (161) 1. male alleles along top 2. female alleles along side 3. copy male alleles down, copy female alleles across 4. list dominant allele first genotypes 1:2:1 (YY, Yy, Yy, yy) phenotypes 3:1 (3 dominant yellow, 1 recessive green)
How are ratios used to predict?	 given a 3:1 ratio, you can predict that an offspring from heterozygous parents will have a 3:1 chance of dominant trait one offspring does not affect the phenotype of another offspring given a large number of offspring from a particular cross, the overall ratio would be similar to the ratio predicted by a Punnett square (162)

What is a Pedigree?	 a model that can show inherited traits shows the phenotypes of genetically related family members can also help determine genotype ex: 3 offspring have a trait that neither parent has, if offspring receive one allele from each parent, but neither parent displays the trait, the offspring must have received 2 recessive alleles (162)
What are the types of dominance?	• Define : <i>incomplete dominance</i> : when the offspring's phenotype is a combination of the parents phenotypes (Ex: white flower + red flower → pink flower)
	 Define: codominance: when both alleles can be observed in a phenotype (ex: white cow + red cow → red and white [roan] cow) (164)
What are the effects of multiple alleles?	 a trait that is determined by multiple alleles ex: human blood type ABO: 3 different alleles I^A, I^B, i the way the alleles combine result in 1 of 4 blood types: A, B, AB, or O I^A and I^B codominant to each other, but both are dominant to i (165)
what is polygenic inheritance?	 Define: when multiple genes determine the phenotype of a trait because several genes determine a trait, many alleles affect the phenotype even though each gene has only 2 alleles (ex: eye color) (165)

How are genes and the environment related?	 an organism's environment can also affect phenotypes (ex: sunlight and temperature) environmental effects on phenotypes for humans: healthy choices can affect phenotype (166)