Chapter 3 Section 1
The Cell Cycle and Cell Division

Name \qquad

Notes, Diagrams, Drawings

- Like changing seasons or the growth of trees, cells go through cycles
- Cell cycle: when cells go through a cycle of growth, development, and division
- Interphase: period in the cell cycle when a cell grows and develops
- Most of a cells life is spent in interphase because cells are:
- Growing
- Replicating (making copies) of their organelles
- Copying DNA (genetic information in a cell)
- Preparing for cell division
- Mitosis: period in the cell cycle when the cell reproduces and two new identical cells form

Eukaryotic cells:

- For some cells, it might last only 8 minutes (fruit fly)
- For other cells, the cycle might take as long as a year
- Most dividing human cells normally complete the cell cycle in about 24 hours (human cells)
- Bacteria: 20 minutes
- Period of rapid growth - the cell gets bigger
- Cellular activities, making proteins, copying organelles
- DNA is copied
- DNA is called chromatin: long, thin strands of DNA
- G1 stage: cell grows rapidly and carries out normal cell functions
- S stage: cell grows and copies its DNA
- there are now identical strands of DNA
- these identical strands of DNA ensure that each new cell
gets a copy of the original cell's genetic information
- G2 stage: cell grows and prepares for mitotic phase

Topics	Notes, Diagrams, Drawings
Organelle Replication	- Before a cell divides, it makes a copy of each organelle - this enables the two new cells to function properly - a cell produces other organelles from materials such a proteins and lipids - a cell makes these materials using information contained in the DNA inside the nucleus - Some organelles, such as the mitochondria and chloroplasts, have their own DNA
The Mitotic Phase	- Mitosis: the cell's nucleus and its contents divide - Cytokinesis: the cell's cytoplasm and its contents divide - Daughter cells: two new cells that result from mitosis and cytokinesis
Phases of Mitosis	
Prophase	- Copied chromatin coils together tightly and forms visible duplicated chromosomes - Nucleolus disappears and nuclear membrane breaks down - Spindle fibers form in the cytoplasm
Metaphase	- Spindle fibers pull and push the duplicated chromosomes to the middle of the cell - This arrangement ensures that each new cell will receive one copy of each chromosome
Anaphase	- Two sister chromatids in each chromosome separate from each other - Spindle fibers pull chromosomes apart in opposite directions - Cell begins to lengthen
Telophase	- Spindle fibers begin to disappear - Chromosomes begin to uncoil - Nuclear membrane forms round each set of chromosomes at either end of the cell - Two identical nuclei form

Topics	Notes, Diagrams, Drawings
Dividing the Cell's Components	- Cell's cytoplasm divides - Animal cell: cell membrane contracts around the middle of the cell and fibers pull together to form a furrow (a crease). The furrow gets deeper and deeper until the cell membrane comes together and divides the cell - Plant cell: vesicles join together to form a cell plate which will grow outward toward the cell wall until two new cells form
Results of Cell Division	- 2 new cells - Both daughter cells are genetically identical to each other and to the original cell that no longer exists
Reproduction	- Reproduction: in some unicellular organisms, cell division is a form of reproduction
Growth	- Growth: cell division in humans begins 24 hours after fertilization and continues rapidly during the first few years of life
Replacement	- Replacement: old and damaged cells are replaced
Repair	- Repair: repairs damage; broken bone will be healed through cell division of bone cells

